Posts

11)Republic Day 2019: 'Nari shakti', military might on show at parade

India Republic Day -- Nowadays, India celebrated its 70th Republic Day. The celebration began wi th the ceremonial ornement at Rajpath, amid restricted security in Delhi. Primary Minister Narendra Modi compensated his tributes to the martyrs by laying a wreath at Amar Jawan Jyoti in the presence of Protection Minister Nirmala Sitharaman and the three service chiefs. The chief guest of this Republic Time was South African Us president Cyril Ramaphosa. At the unfurling of the tricolour, the group played the national anthem with a 21-gun salute dismissed in the background. Many senior management, including Home Minister Rajnath Singh and External Issues Minister Sushma Swaraj, along with former prime ministers Manmohan Singh and Deve Gowda, Congress leaders Rahul Gandhi and Ghulam Nabi Azad and Delhi Chief Minister Arvind Kejriwal were some of those present on the occasion. The complete theme for the Republic Time celebrations this year is the a hundred and fiftieth birth anniversary of

Biopharmaceutical

Image
A biopharmaceutical , also known as a biologic(al) medical product , or biologic , is any pharmaceutical drug product manufactured in, extracted from, or semisynthesized from biological sources. Different from totally synthesized pharmaceuticals, they include vaccines, whole blood, blood components, allergenics, somatic cells, gene therapies, tissues, recombinant therapeutic protein, and living medicines used in cell therapy. Biologics can be composed of sugars, proteins, nucleic acids, or complex combinations of these substances, or may be living cells or tissues. They (or their precursors or components) are isolated from living sources—human, animal, plant, fungal, or microbial. They can be used in both human and animal medicine. Terminology surrounding biopharmaceuticals varies between groups and entities, with different terms referring to different subsets of therapeutics within the general biopharmaceutical category. Some regulatory agencies use the terms biological medicinal prod

Major classes

Image
Extracted from living systems edit Some of the oldest forms of biologics are extracted from the bodies of animals, and other humans especially. Important biologics include: Whole blood and other blood components Organ transplantation and tissue transplants Stem-cell therapy Antibodies for passive immunity (e.g., to treat a virus infection) Human reproductive cells Human breast milk Fecal microbiota Some biologics that were previously extracted from animals, such as insulin, are now more commonly produced by recombinant DNA. Produced by recombinant DNA edit As indicated the term "biologics" can be used to refer to a wide range of biological products in medicine. However, in most cases, the term "biologics" is used more restrictively for a class of therapeutics (either approved or in development) that are produced by means of biological processes involving recombinant DNA technology. These medications are usually one of three types: Substances that are (nearly)

Biosimilars

With the expiration of numerous patents for blockbuster biologics between 2012 and 2019, the interest in biosimilar production, i.e., follow-on biologics, has increased. Compared to small molecules that consist of chemically identical active ingredients, biologics are vastly more complex and consist of a multitude of subspecies. Due to their heterogeneity and the high process sensitivity, originators and follow-on biosimilars will exhibit variability in specific variants over time, however the safety and clinical performance of both originator and biosimilar biopharmaceuticals must remain equivalent throughout their lifecycle. Process variations are monitored by modern analytical tools (e.g., liquid chromatography, immunoassays, mass spectrometry, etc.) and describe a unique design space for each biologic. Thus, biosimilars require a different regulatory framework compared to small-molecule generics. Legislation in the 21st century has addressed this by recognizing an intermediate gro

Commercialization

When a new biopharmaceutical is developed, the company will typically apply for a patent, which is a grant for exclusive manufacturing rights. This is the primary means by which the developer of the drug can recover the investment cost for development of the biopharmaceutical. The patent laws in the United States and Europe differ somewhat on the requirements for a patent, with the European requirements perceived as more difficult to satisfy. The total number of patents granted for biopharmaceuticals has risen significantly since the 1970s. In 1978 the total patents granted was 30. This had climbed to 15,600 in 1995, and by 2001 there were 34,527 patent applications. In 2012 the US had the highest IP (Intellectual Property) generation within the biopharmaceutical industry, generating 37 percent of the total number of granted patents worldwide; however, there is still a large margin for growth and innovation within the industry. Revisions to the current IP system to ensure greater relia

Large-scale production

Biopharmaceuticals may be produced from microbial cells (e.g., recombinant E. coli or yeast cultures), mammalian cell lines (see Cell culture) and plant cell cultures (see Plant tissue culture) and moss plants in bioreactors of various configurations, including photo-bioreactors. Important issues of concern are cost of production (low-volume, high-purity products are desirable) and microbial contamination (by bacteria, viruses, mycoplasma). Alternative platforms of production which are being tested include whole plants (plant-made pharmaceuticals). Transgenics edit A potentially controversial method of producing biopharmaceuticals involves transgenic organisms, particularly plants and animals that have been genetically modified to produce drugs. This production is a significant risk for the investor, due to production failure or scrutiny from regulatory bodies based on perceived risks and ethical issues. Biopharmaceutical crops also represent a risk of cross-contamination with non-eng

Regulation

European Union edit In the European Union, a biological medicinal product is one of the active substance(s) produced from or extracted from a biological (living) system, and requires, in addition to physico-chemical testing, biological testing for full characterisation. The characterisation of a biological medicinal product is a combination of testing the active substance and the final medicinal product together with the production process and its control. For example: Production process – it can be derived from biotechnology or from other technologies. It may be prepared using more conventional techniques as is the case for blood or plasma-derived products and a number of vaccines. Active substance – consisting of entire microorganisms, mammalian cells, nucleic acids, proteinaceous, or polysaccharide components originating from a microbial, animal, human, or plant source. Mode of action – therapeutic and immunological medicinal products, gene transfer materials, or cell therapy mat