Major classes




Extracted from living systemsedit

Some of the oldest forms of biologics are extracted from the bodies of animals, and other humans especially. Important biologics include:

  • Whole blood and other blood components
  • Organ transplantation and tissue transplants
  • Stem-cell therapy
  • Antibodies for passive immunity (e.g., to treat a virus infection)
  • Human reproductive cells
  • Human breast milk
  • Fecal microbiota

Some biologics that were previously extracted from animals, such as insulin, are now more commonly produced by recombinant DNA.

Produced by recombinant DNAedit

As indicated the term "biologics" can be used to refer to a wide range of biological products in medicine. However, in most cases, the term "biologics" is used more restrictively for a class of therapeutics (either approved or in development) that are produced by means of biological processes involving recombinant DNA technology. These medications are usually one of three types:

  1. Substances that are (nearly) identical to the body's own key signalling proteins. Examples are the blood-production stimulating protein erythropoetin, or the growth-stimulating hormone named (simply) "growth hormone" or biosynthetic human insulin and its analogues.
  2. Monoclonal antibodies. These are similar to the antibodies that the human immune system uses to fight off bacteria and viruses, but they are "custom-designed" (using hybridoma technology or other methods) and can therefore be made specifically to counteract or block any given substance in the body, or to target any specific cell type; examples of such monoclonal antibodies for use in various diseases are given in the table below.
  3. Receptor constructs (fusion proteins), usually based on a naturally occurring receptor linked to the immunoglobulin frame. In this case, the receptor provides the construct with detailed specificity, whereas the immunoglobulin-structure imparts stability and other useful features in terms of pharmacology. Some examples are listed in the table below.

Biologics as a class of medications in this narrower sense have had a profound impact on many medical fields, primarily rheumatology and oncology, but also cardiology, dermatology, gastroenterology, neurology, and others. In most of these disciplines, biologics have added major therapeutic options for the treatment of many diseases, including some for which no effective therapies were available, and others where previously existing therapies were clearly inadequate. However, the advent of biologic therapeutics has also raised complex regulatory issues (see below), and significant pharmacoeconomic concerns, because the cost for biologic therapies has been dramatically higher than for conventional (pharmacological) medications. This factor has been particularly relevant since many biological medications are used for the treatment of chronic diseases, such as rheumatoid arthritis or inflammatory bowel disease, or for the treatment of otherwise untreatable cancer during the remainder of life. The cost of treatment with a typical monoclonal antibody therapy for relatively common indications is generally in the range of €7,000–14,000 per patient per year.

Older patients who receive biologic therapy for diseases such as rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis are at increased risk for life-threatening infection, adverse cardiovascular events, and malignancy.

The first such substance approved for therapeutic use was biosynthetic "human" insulin made via recombinant DNA. Sometimes referred to as rHI, under the trade name Humulin, was developed by Genentech, but licensed to Eli Lilly and Company, who manufactured and marketed it starting in 1982.

Major kinds of biopharmaceuticals include:

  • Blood factors (Factor VIII and Factor IX)
  • Thrombolytic agents (tissue plasminogen activator)
  • Hormones (insulin, glucagon, growth hormone, gonadotrophins)
  • Haematopoietic growth factors (Erythropoietin, colony-stimulating factors)
  • Interferons (Interferons-α, -β, -γ)
  • Interleukin-based products (Interleukin-2)
  • Vaccines (Hepatitis B surface antigen)
  • Monoclonal antibodies (Various)
  • Additional products (tumour necrosis factor, therapeutic enzymes)

Research and development investment in new medicines by the biopharmaceutical industry stood at $65.2 billion in 2008. A few examples of biologics made with recombinant DNA technology include:

USAN/INN Trade name Indication Technology Mechanism of action
abatacept Orencia rheumatoid arthritis immunoglobin CTLA-4 fusion protein T-cell deactivation
adalimumab Humira rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis, ulcerative colitis, Crohn's disease monoclonal antibody TNF antagonist
alefacept Amevive chronic plaque psoriasis immunoglobin G1 fusion protein incompletely characterized
erythropoietin Epogen anemia arising from cancer chemotherapy, chronic renal failure, etc. recombinant protein stimulation of red blood cell production
etanercept Enbrel rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis recombinant human TNF-receptor fusion protein TNF antagonist
infliximab Remicade rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis, ulcerative colitis, Crohn's disease monoclonal antibody TNF antagonist
trastuzumab Herceptin breast cancer humanized monoclonal antibody HER2/neu (erbB2) antagonist
ustekinumab Stelara psoriasis humanized monoclonal antibody IL-12 and IL-23 antagonist
denileukin diftitox Ontak cutaneous T-cell lymphoma (CTCL) Diphtheria toxin engineered protein combining Interleukin-2 and Diphtheria toxin Interleukin-2 receptor binder
golimumab Simponi rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, ulcerative colitis monoclonal antibody TNF antagonist

Vaccinesedit

Many vaccines are grown in tissue cultures.

Gene therapyedit

Viral gene therapy involves artificially manipulating a virus to include a desirable piece of genetic material.

Comments

Popular posts from this blog

11)Republic Day 2019: 'Nari shakti', military might on show at parade

Regulation

Large-scale production